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1 Introduction

The relation between cash-flow maturity and risk premia is a key issue in asset pricing. The price
of any asset is the present value of each of its cash flows discounted at an appropriate rate. Implicit
in any valuation, is, therefore, an assumption of how discount rates vary with maturity.

In economic terms, the relation between risk premia and maturity informs us about the persistence
of the shocks that command a risk premium. Intuitively, a high risk premium for short-term assets
suggests that investors demand risk premiums from shocks that die out quickly. This insight is
featured in a growing literature that relates risk premium and maturity in equity markets (Lettau
and Wachter [2007], van Binsbergen et al. [2012], Binsbergen et al. [2011], Hansen et al. [2008]).
In this literature, the key question is about the persistence of (dividend- or consumption-) growth
shocks that investors are concerned with and demand a risk premium to bear.

Economic growth has been in the center of macroeconomics for decades, but more recently, another
class of macroeconomic shocks has been in the spotlight, these are the so-called uncertainty shocks.
Shifts in some measure of aggregate uncertainty have been put in the center of business cycles
(Bloom [2009]); have been linked to business cycles, aggregate stocks market returns, risk premia
and the quantity of risk in the economy (Baker et al. [2013], Pastor and Veronesi [2012, 2013]); have
been evoked to explain the cross-section of equity returns (Ang et al. [2006]) and why value stocks
overperform growth ones (Bansal et al. [2012]Campbell et al. [2011]).

In this paper, I keep the focus on maturity, but instead of investigating growth-sensitive assets, I
study uncertainty-sensitive ones, and, in this way I will shed light on the horizon of uncertainty
that investors fear. Namely, I study how risk premia varies with maturity in the large, liquid, and
term-structure-data-rich Credit Default Swap (CDS) market.

Credit default swaps are derivatives that work as insurance against the default of a corporation. A
buyer of running-spread CDSs makes periodic payments – the CDS spread – in exchange for being
compensated by the loss in bond value (compared to par) when there is a default. In other words,
a buyer of CDS pays for somebody else to bear credit risk for them.

In Merton [1974] seminal work, the credit risk of firm is a function of its leverage and asset return
volatility. Intuitively buying a defaultable bond is like writing a put on the total value of the assets
of a firm and buying a treasury. Hence, the credit spread of a portfolio of bonds should be and
empirically is (Campbell and Taksler [2003], Zhu [2009]) closely linked to the uncertainty about the
values of those firms in the portfolio. Hence learning about the relation between maturity and risk
premia in those markets sheds light on the horizons of uncertainty investors fear.

To study the term structure of risk premia, I construct holding-period returns of constant-duration
CDS (CD CDS) portfolios of di�erent maturities. The returns of CD-CDS portfolios are equal to
the returns of CDS portfolios, scaled by a measure of their CDS spread sensitivity – like duration is
for risk-free bonds.1 In this way, for short holding periods, CD-CDS returns of various maturities

1I consider two measures of this sensitivity. The first measure is the lagged risky-duration, which is the risky-bond
analogous of risk-free-bond duration and can be calculated from CDS spreads. The second measure is just the CDS
return volatility, which I show is empirically equivalent to an average risky-duration scaling.
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just di�er in the maturity of the realized CDS spreads to which they are sensitive, but do not di�er

in the size of this sensitivity. Hence, the cross-section of risk premia of CD-CDS portfolios is directly
related to the prices of shocks to average CDS spreads of various maturities. The pricing of those
shocks informs us about the risk premia earned by CDS portfolios cash flow across maturities.

I first examine the relationship between average returns and maturity among several groups of CDSs:
single-name CDSs of BBB-rated firms, single-name CDSs of lower- and higher-yielding firms, the
index of U.S. investment grade CDS (CDX-NAIG index), and among the index of mostly European
corporates (the ITRAXX-Europe). Within each of those groups of CDS, the average one-month
returns of selling CD CDSs are decreasing in maturity. For example, within the universe of CDSs
written on BBB-rated firms in the United States from April of 2002 to February of 2013, a strategy
that sells short-maturity CD CDSs and buys long-maturity CD CDSs had an annualized Sharpe
ratio of 0.95. I call this portfolio “LSM”: long and short maturity.

Second, I study the shocks to which short- and long-maturity CDS portfolio returns are di�erentially
exposed. CD-CDSs of di�erent maturities have similar unconditional betas on a market portfolio of
CD CDS, and thus, an unconditional CDS market model fails. However, the LSM portfolio prices
the cross-section of CD CDS portfolios sorted on maturity. The betas on the LSM portfolio explain
the variation in expected returns by maturity not only among portfolios of CDSs of BBB-rated
firms but also among both lower- and higher-yielding firms. In other words, the risk premium on

exposures to LSM carries similar prices among low- and high-yielding CDSs. This first exercise
reduces the problem of understanding the exposures of an entire cross-section of CDS portfolios of
di�erent maturities to understanding the exposures of the LSM.

To understand what drives LSM, I plot the time series of the term structure of average CDS spreads
of BBB-rated firms. In calm times, short-maturity spreads are lower and less volatile than are long-
maturity spreads. In turbulent periods, which include 2002 and the financial crisis beginning in
2007, short-maturity spreads are higher and more volatile than long-maturity spreads.
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From this behavior of CDS spreads over time, we can learn a lot about CDS curve steepeners.
Those steepeners, of which the LSM is an example, are bets that the CDS curve will get steeper.
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By definition, the LSM takes short-term spread risk by selling short-maturity CDS portfolios and
hedges long-term spread risk by buying long-maturity CDS portfolios.

In calm times, the fact that short-term spreads do not move as much as long-term spreads implies
the LSM is a hedge to overall increases in credit spreads, because long-term CDS spreads drive those
increases. In turbulent times, the fact that short-term spreads become more volatile than long-term
spreads means the LSM is no longer a hedge to across-the-board increases in CDS spreads: it is
now vulnerable to across-the-board increases in spreads or, equivalently, it loads on CDS-market
risk. This change in sensitivities follows from the fact that, during those turbulent times, the
short-maturity spreads are moving even more than long-maturity spreads.

If the price of CDS-market risk is higher during turbulent periods than it is during calm periods,
the dynamics of LSM CDS-market betas naturally suggest that a conditional CDS market model
may price the cross-section of CD-CDS across maturities. Using the five-year average CDS spread
of BBB-rated firms to capture time variation in the CDS-market risk premium, I show that a
conditional CDS market model indeed prices the cross-section of CD CDS portfolio returns sorted
on maturity as accurately as the LSM model.

To understand what those empirical results imply about the characteristics of asset prices in the
economy, and in particular to the horizon of uncertainty investors are concerned with, I build a
parsimonious structural credit risk model and calibrate it to match my empirical results.

The model is a CAPM and it has three key ingredients that vary over time: risk premia, the volatility
of the return on assets of a typical BBB-rated firm, and its default boundary. One state variable
drives them all. When the state is high, the economy is bad – risk premia, volatilities, and the
default boundaries are all high – and vice-versa when the state is low. This one-factor model means
that average CDS spreads of BBB-rated firms of any maturity also depend on just this single state
variable. In this aspect, this model is analogous to that of Chen et al. [2009].

This model reduces to Merton [1974]’s model if the single state variable is constant over time. In such
a world, the average CDS spread of BBB-rated firms is constant. To produce interesting dynamics,
I assume that the state variable has persistent dynamics. Now, BBB CDS spreads of all maturities
vary over time. In particular, they all increase when the economy deteriorates. The size of the
increase across maturity, however, depends on the persistence of the state variable. If the economy

is weakly persistent, long-maturity CDS spreads rise faster than short-maturity CDS spreads in good

times, but short-maturity spreads rise faster than long-maturity spreads in bad times.

On the one hand, this dynamic of CDS spreads implies that when the economy deteriorates from
a healthy starting point, both the level and the slope of the term structure of CDS spreads rise
together. In terms of the returns that I study, when the economy is healthy, the LSM is a hedge
to CDS-market returns. The intution for this negative correlation is that in good times, the fact
that the economy mean reverts implies long-maturity assets are risky even if the short-term outlook
is good, whereas short-term assets are relatively safe given such an outlook. On the other hand,
in a bad economy, the level and the slope of the term structure of CDS spreads move in opposite
directions. When the economy is bad, the LSM loads up on CDS-market risk. The intution for
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this positive correlation is that in bad times, the fact that the economy mean reverts implies that
long-maturity assets are less risky than what the gloomy short-term outlook suggests, whereas
short-term assets are as risky as the short-term outlook suggests.

The LSM is risky in the model because the shocks to the state variable are priced high when the
state is high (and low otherwise) and these high prices coincide with LSM’s high exposures. All the
model’s ingredients as well as the low-persistence state dynamics play an important role in obtaining
those results. If default boundaries are constant and volatility dynamics realistic, the short-maturity
CD CDS will always be safer than the long-maturity ones. If risky premia are constant, LSM’s risk
premium will be smaller or even negative. If the economy is too persistent, the LSM will be a hedge
to deteriorations in economic conditions for most of the state space.

The paper is organized in six sections. In section 2, I describe the data and explain how I compute
CDS returns. In section 3, I construct portfolios and study their average returns and exposures.
In section 4, I study the LSM’s time-varying CDS market betas and I propose an empirical asset-
pricing model based on those findings. Section 5 presents the credit-risk model that rationalizes my
findings. In section 6, I o�er concluding remarks.

2 Data

In this section, I first describe the data sources that I use and give an overview of the data. In the
last part, I describe how I compute the returns of writing a CDS. I leave to the on-line appendix a
discussion of the insitutional details of the CDS market.

2.1 Description of Data Sources

I use CDS spread quotes for single names and credit indexes from Markit, stock return informa-
tion from CRSP, balance sheet information from Compustat, and default date and recovery rate
information from Moody’s, CRSP, Compustat and Creditex. The first three default databases are
standard in studies of corporate default (Du�e et al. [2007]). The last database, Creditex, is not.
This database contains the outcome of CDS settlement auctions. These auctions take place shortly
after a credit event and their outcome is a price for the defaulted bonds. This price serves as
a reference for the payo�s of CDSs. Thus, this database is the most precise regarding CDS re-
turn computations. Finally, from Datastream, I obtain data on several Barclays government and
corporate bond portfolios, and from Optionmetrics I obtain data on the risk-free term structure.

For single names, I use mid-price quotes on dollar-denominated Credit Default Swaps of documenta-
tion clause XR. I use those quotes at tenors 1, 3, 5, 7, and 10 years. Documentation clauses specify
what happens with the CDS in case of a debt restructuring. XR CDSs are not triggered in a debt
restructuring. This type of documentation clause is the standard type for United States corporates
after 2009. Before, the MR documentation clause was the standard. MR CDSs are triggered in
restructurings, but only bonds with remaining time to maturity below thirty months can be traded
for par in those circumstances.
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For credit indexes, I use mid-price quotes on the same tenors and across all series and versions of
the index.

2.2 Summary Statistics of Yields

Panel A of Figure 1 displays investment-grade single-name data. The left plot displays the average
CDS spreads of investment grade public corporations at various maturities, and the right plot shows
several measures of the steepness the term structure of CDS spreads. CDS spreads of all maturities
spike on three separate occasions: at the beginning of the sample in late 2002, during the financial
crisis around late 2008 and early 2009, and more recently in late 2011 and early 2012. At the first
two times average CDS spreads increase considerably, the slopes of term structure of CDS spreads
flatten. These patterns about the steepness of the term structure are clearest in the second plot,
which has the slope of the term structure at various points as well as forward CDS rates computed
the same way as risk-free forwards.2 Long-term forward rates are generally higher than short-
term ones, but during crisis episodes, the gap between short-term and long-term forwards closes.
Likewise, the slopes of the term structure of CDS spreads are generally positive, but during crisis,
they fall to zero or even negative. Later, I will show there is a rich time-varying relation between
the steepness of the term structure of credit spreads and its level.

Panel B displays the average spreads of two CDS index: a U.S. corporate credit index – CDX-
NAIG – and a mainly European one – ITRAXX-Europe. The European and U.S credit index, in
their smaller sample, paint a similar picture as the single-name average. CDS spreads spike during
the financial crisis and more recently, with the European-heavy index’s latest spike being almost
as extreme as that observed during the financial crisis. The steepness of both index felt during
the financial crisis, becoming inverted at times. More recently, the ITRAXX-Europe experienced
another simultaneous increase and flattening of the spread curve.

2.3 CDS Holding-Period Returns

For most of my analysis, I treat all CDS as running spread CDS. This assumption is true for non-
high-yield single names before March 2009 and implies some approximation after that date. In
unreported results, I replicate some key calculations under the assumption that the CDS are of the
upfront type, and show the results are the same. In the calculations that I display, I will assume that
the coupon payments are continuous.3 The fact that payments are quarterly make computations a
little messier and will have negligible e�ects in close-to-zero short-term interest environments.

If there is no default, the holding-period excess return (or, simply, return; I will use the terms
interchangeably) of selling a running-spread CDS with fixed payment (or spread) y per period is
given by

rsCDS = y + Capital Gain, (1)
2This approximation can be justified by a linearization around zero risk-free interest rates and risk-neutral default

probabilities.
3In the true calculations I will take into account that payments are quarterly.
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where the Capital Gain is the value of the seasoned CDS.4 If there is a default, the return of selling
a CDS is negative and equal to minus loss-given-default (LGD), that is the di�erence between the
par value of the underlying bond and its value immediately afer default. Defining p (y, N, t) as
the time-t value of a CDS with payments y and maturity N , I can express equation 1, now with
maturity supercrips and time subscripts, as

rsCDS
t+1 = yN

t

≠ p
1
yN

t

, N ≠ 1, t + 1
2

+ p
1
yN

t

, N, t
2

,

= yN

t

≠ p
1
yN

t

, N ≠ 1, t + 1
2

,

where from the first to the second line I used the fact that p
1
yN

t

, N, t
2

= 0 because in a running-
spread CDS, yN is chosen to make its initial value equal to zero. This equation means that even
with data on credit spreads at all maturities (quotes or extrapolations), rsCDS

t+1 is not observable
because data on p

1
yN

t

, N ≠ 1, t + 1
2
, the capital gain term, would still be missing. This term,

however, can be inferred from credit spreads and risk-neutral default probabilities. To see that,
note that a seasoned CDS can be expressed as a current CDS of same maturity plus another asset
which pays the di�erences between the periodic payments of the old and new CDS, yN

t

≠ yN≠1
t+1 , as

long as the firm has not defaulted and the CDS has not matured. The value of a current CDS is zero
by definition. The value of the payments yN

t

≠ yN≠1
t+1 depends on the term-structure of risk-neutral

default probabilities and risk-free discount rates. Defining the follow notation:

Parameter Definition
· time of default

�
t+1 Information set at time t + 1

P RN (A, �
t+1) Time t + 1, risk-neutral probability of event A.

D (s, �
t

) Time t tisk-free discount function for cash flows s periods in the future.

I can express the capital gain term as

p
1
yN

t

, N ≠ 1, t + 1
2

= ≠
1
yN

t

≠ yN≠1
t+1

2
◊ RD (N ≠ 1, �

t+1) , (2)

where
RD (N ≠ 1, �

t+1) =
ˆ

N≠1

i=0
P RN (· > t + 1 + i, �

t+1) D (i, �
t+1) di

is the time-t+1, N-1-period risk duration, the sum of the risk-neutral survival probabilities and risk-
free discount functions from the current date to N ≠1 periods into the future.5 To understand what
RD means, consider the example in which both the risk-neutral default probability and risk-free
rates are zero. In this case, RD (N ≠ 1, �

t+1) = N ≠ 1, which is just the number of installments to
which the CDS buyer is entitled. Clearly RD (N ≠ 1, �

t+1) is a measure of the duration of those
payments, hence the term "risky duration" for RD (N ≠ 1, �

t+1).
4I am doing the calculations assuming the continuous fixed payments are kept as cash until next period.
5This risk-duration formula is for the case coupons are continuously paid. in the empirical exercise I treat them

as they really are: paid every quarter.
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When there is no default during the holding period, I have reduced the task of computing CDS
holding-period returns to obtaining a term structure of credit spreads, risk-neutral default proba-
bilities and risk-free discount rates. For the term structure of CDS spreads I either use observed
quotes or lineraly-extrapolated ones when needed. I infer the term structure of risk-neutral default
probabilties from the CDS spread of the quotes of the closest-maturity-quoted CDS, assuming a
loss-give-default of 40% and a constant hazard rate.6 I use the term structure of risk-free rates
available in the optionmetrics dataset.

When there is a default, I use the default databases to determine the loss given default and use the
negative of this number as the return for that single-name CDS. For credit indexes, when there is
a default I sell the position on the legacy version of the index and start trading the newer version
next month.

3 Expected Returns and Betas by Maturity

In this section I study the risk premia of assets exposed to shocks to di�erent parts of the term
structure of credit spreads. That is, I study the risk premia of portfolios of CDS of di�erent
maturities.

I construct two sets of portfolio returns from selling single-name CDS. In the first type, I look only
at BBB-rated firms. In the second type, I look at the whole cross section by sorting firms according
to their 5-year CDS spreads at the beginning of the month. For both sets of portfolios I create
equal-weight returns of selling 3,5,7, and 10-year CDS.

Short-maturity portfolios of CDSs (long risk) lose value when short-maturity credit spreads rise,
whereas long-maturity portfolios of CDSs lose value when long-maturity credit spreads rise. How-
ever, for a same rise in credit spread, short-maturity CDSs increase less in value than long-maturity
CDSs. In other words, CDS of di�erent maturities have di�erent risky durations.

It follows that to measure the risk premia commanded by shocks to credit spreads of di�erent ma-
turities, I cannot simply compare the risk premium of long- and short- maturity CDS. The relevant
comparison is between a leveraged position on short-maturity CDS and another less-leveraged po-
sition on long-maturity CDS, with the additional leverage on the short-maturity position chosen to
compensate for short-maturity CDSs lower sensitivity to underlying spreads.

The sensitivity of a CDS value with respect to a small change in credit spreads is its risk duration,
which can be measured from the term structure of CDS spreads as explained in section 2.3. In
Figure 2, I plot average risk durations of CDS portfolios of di�erent maturities. The average risk
durations increase fast with maturity, with the duration of a 10-year CDS being roughly three
times larger than that of a 3-year CDS. Figure 2 also shows that portfolio risk-durations and return
volatilities are closely tied. In fact, within a credit-quality group, the correlation between average
risky duration and return volatility is always larger than 99%.

6I also do all caculations using the cds standard model. This model is widely used to mark CDSs to market. It
assumes a loss given default of 40% and non-stochastic hazard rates that are a piecewise linear function of time.
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The link between return volatility and risk duration imply that leveraging portfolios of CDS by
the inverse of their return volatilizes also creates assets whose values have similar sensitivity to
shocks to underlying credit spreads. Interestingly, the average returns of so-adjusted portfolios are
proportional to the Sharpe ratios of the unlevered portfolios. I will focus my analysis on portfolios
leveraged this way. More precisely, I leverage the BBB-rated-single-name portfolios and the indexes
to have a 5% return volatility. For the spread-sorted-portfolio returns, I choose leverage such that
these returns all have the same volatility as that of the 5-year CDS return within that credit-spread
bin.

Table 1 reports average returns by maturity within each of the groups of CDS I analyze. The
average returns earned from selling short-maturity CDS are always larger than those earned from
selling long-maturity CDS. Among BBB-rated firms from April 2002 to February 2013, the average
one-month return of (selling) a 3-year CDS is 124 basis points whereas that of 10-year CDS is 65
basis points, both leveraged to a 5% one-month volatility. As a consequence, a portfolio that sells 3-
year CDS and buys 10-year CDS earn a monthly return of 58 basis points. Importantly, because the
3- and 10- year CDS are also strongly correlated, the long-and-short portfolio also has low volatility.
As a consequence the average of 58 basis points is statistically significant, its 12-lag-Newey-West
standard deviation is just 19 basis points and a 24-month block bootstrap strongly rejects the null
that it is equal to zero.

To allay concerns that the significance of the risk premia is being driven by the 131-month sample,
I estimate the risk premium of the long-and-short CDS factor using information on BBB Barclay’s
corporate bonds portfolios of intermediate and long maturity. Intuitively, if the 2000’s were an
exceptional year for the long-and-short portfolio, a similar long-and-short portfolio built with bonds
would have had much stronger returns from 2002 to 2012 than from 1973 to 2001. Formally, I use
Lynch and Wachter [2008]’s technique to combine moments of unequal sample length. The point
estimates are very similar and the statistical significance slightly stronger. See the on-line appendix
for details.

Sharpe ratios behave very similarly to returns. They start at high 0.63 (per year) for the 3-year
portfolio and decline towards 0.41 at the 10-year maturity. The long-and-short portfolio has a 0.92
Sharpe ratio.7

These results are not a unique to constant-volatility portfolios. The results are very similar if I
look at the returns of one-risk-duration portfolios. The annualized one-month return of selling one-
risk-duration, 3-year and 10-year CDS are 58 and 10 basis points, respectively. The long-and-short
portfolio has a statistically significant 48 basis points average return.

Neither are the results unique to BBB-rated CDS, nor to portfolios of single-name CDS. The same
patterns arise among each of the five sets of firms sorted according to their 5-year-CDS spread and
among the CDX-NAIG and ITRAXX-Europe indexes. The results among low- and high-5-year-
CDS firms are as statistically strong as those with BBB-rated firms only. It is statistically weaker
among the credit indexes, but the sample for the indexes is much smaller: April 2006 to May 2012.

7Sharpe ratios are annualized taking into account autocorrelations as in Lo [2002].
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The conclusion that average returns decrease with maturity is pervasive. I next investigate whether
these pattern in average returns have a counterpart in comovement: do the portfolio betas with
respect to a long-and-short portfolio decrease in the same way as average returns do?

To answer this question I have to settle on a risk factor. I choose the second principal component of
the returns of BBB-rated portfolios, but the results are very similar for other choices. The weights
on of the second principal component are 0.74, 0.12, -0.25 and -0.61 on the 2-,5-,7- and 10-year
portfolios, respectively. The average return of the second principal component, henceforth LSM for
Long and Short Maturity, equals 45 basis points per month and are statistically significant.

Panel A of Table 2 reports the betas of the CDS portfolios with respect to LSM. Within each
group of CDS with a similar credit quality, portfolio’s LSM betas decrease monotonically with
maturity. This result suggests that an empirical asset pricing model featuring the LSM can explain
the di�erence in risk premia by maturity across all these di�erent groups of CDS. To test this
hypothesis, I evaluate the pricing performance of such a model. Besides the LSM, I include two
additional factors, a CDS-market factor and a high-spread-minus-low-spread factor.

I define the CDS-market factor as an equal-weight portfolio of all 20 portfolios sorted on 5-year
spreads and maturity. By definition all portfolios will have equal loadings on it, hence it will help
the model match an asset-class-level risk premia, much like the market portfolio of stocks helps
an empirical model match the fact that stock portfolios, on average, earn a risk premium. In a
Merton-type model, the CDS-market factor is closely tied to changes in the volatility of the value
of the assets of firms in the economy. This portfolio has low returns when there are across-the-
board increases in CDS spreads. One reason for across-the-board increases is an increase in firms’
asset value volatilities, hence the link between such returns and changes in uncertainty. If investors
charge a risk premia for shifts in uncertainty about firm values and the CDS-market portfolio has low
returns when uncertainty increases, the CDS-market portfolio should carry a positive risk premium.

Portfolio’s average returns tend to increase with credit spreads, especially among short-maturity
CDS. This positive relation between CDS spreads and average returns in the cross-section is con-
sistent with work that finds that higher-yielding bonds command higher risk premia (Fama and
French [1993], Gebhardt et al. [2005]). In this literature, the excess returns of high-yielding bonds
can be tied to betas to a long-and-short portfolio that buys high-yield bonds and sells low-yield
ones. I follow this tradition and use a high-spread-minus-low-spread factor to capture the variation
in expected returns that is related to the level of CDS spreads.8

In sum, I propose the following asset pricing model:

ERi,k

t+1 = —i

1E
Ë
RMKT,ALL

t+1
È

+ —i

2E [HSMS
t+1] + —i

3E [LSM
t+1] ,

where RMKT,ALL

t+1 = 1
20

q
iœ{3,5,7,10}

q5
k=1 Ri,k

t+1 is the return of the previously defined market portfo-
lio of CDS, HSMS

t+1 =
q

iœ{3,5,7,10} Ri,5
t+1≠Ri,1

t+1 is the return of the high-spread minus a low-spread
portfolio, LSM

t+1 is the return of the second principal component of BBB-rated portfolio returns,
8This factor does not explain the term structure of risk premia.
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and Ri,k

t+1 is the return of a portfolio of maturity i and credit risk k, scaled to have volatility equal
to ‡

1
R5,k

t+1
2
.

To test the model, I rely on the fact that all factors are excess returns and use time-series tests of
asset pricing models. I estimate multivariate alphas and betas by running full-sample time-series
regressions of returns on factors. Figure 3 displays true and model-predicted average returns for the
twenty portfolios sorted on spreads and maturity. The two line up closely. The largest di�erences
show up in the price of risks needed to match low- and high-spread portfolios, it would have to be
higher to match the low-risk ones and lower to match the high-risk ones.

Nevertheless, the three-factor model explains 99% of the cross-sectional variation in expected returns
and the mean-absolute value of the model’s alphas are only 12% of the original mean-absolute value
of mean returns. The model, however, is still statistically rejected (p-value<0.01) as reported in
Panel B of Table 2. The rejection is partly due to the high average time-series R-squares of 96% and
partly due to slight di�erences in LSM price of risk across the credit quality spectrum. The portfolio
that rejects the model is a double long-and-short across maturities and credit quality. Because of
the slight di�erences in LSM price of risk across credit quality, this double-long-and-short portfolio
has a small positive return, and because of the high R-squares, an even smaller volatility. The
fact that this strategy relies on levering small average returns means that its economic importance
depends on close-to-zero trading costs, which are unlikely, hence I do not take this rejection as a
serious challenge to the model.

This section’s characterization of the term structure of credit risk begets a new question. What
macroeconomic sources of risk LSM is a proxy for? or in other words, to what macroeconomic
sources of risk are short- and long-maturity CDSs di�erentially exposed? In the next sections I will
elaborate on this question.

4 Time Variation in Portfolios’ CDS-Market Betas and in the
CDS-Market Risk Premium Explain The Cross-Section of Ex-
pected Returns

In this section, I argue that the risks of short- and long-maturity CDS portfolios are time varying
in a way that explains their di�erent unconditional average returns. First, I will show evidence
that when the risk premium investors demand to hold the CDS-market is high, the CDS-market
betas of short-term portfolios rise relative to those of long term portfolios. This joint dynamics
of risk premia and betas imply that the average risk premium of short-term assets is higher than
what is implied by their unconditional CDS-market betas. In the second part of this section, I go
one step ahead and ask whether the joint dynamics of betas and CDS-market risk premium can,
alone, quantitatively explain the cross-sectional di�erences in expected returns. That is, I evaluate
an empirical asset pricing model in which the price of CDS-market risk is allowed to vary, but in
which I exclude the LSM factor.

10



4.1 Time-Varying Betas and Risk Premia

Figure 4, I plot an estimate of the conditional correlation between the LSM and the market returns –
the 12-month forward-looking rolling correlation between them. The correlations vary substantially
over times. They are positive at two periods: 2002 and in during the financial crisis in 2008. All
other times it is negative and many times strongly, it is close to minus one most of the time from
the end of 2002 to 2006 and from 2010 to 2012.

Besides suggesting that correlations vary over time, Figure 4 suggests a marked business cycle
pattern. To make this clear, I use the average CDS spreads of BBB-rated firms as an indicator of
macroeconomic conditions. Empirically, High credit spreads mark bad macroeconomic conditions (
Gilchrist and Zakrajöek [2011] ). Economically, there are many possible reasons for credit spreads
to be countercyclical. Bad macroeconomic times are associated with asset prices that express higher
risk aversion and higher uncertainty about firms’ cash flows, both lead to higher credit spreads. I
plot average CDS spreads of BBB-rated firms along with the correlations in Figure 4. The two
move closely together, with both being high in 2002 and the financial crisis.9

The plots are suggestive, but they do not provide statistical evidence for the time-variation in LSM
CDS-market betas. To do so, I estimate conditional betas and test whether they vary over time. I
estimate conditional betas by running regressions of LSM on the CDS-market and on interactions
of the CDS market with functions of the average 5-year CDS spread:

LSM
t+1 = – + f

1
Y 5

BBB,t

, —
2

◊ RMKT,ALL

t+1 + Á
t+1.

To facilitate the interpretation of the conditional beta, I scale the market return to have the same
standard deviation of LSM and I use the z-score of Y 5

BBB

. Table 3 report the estimates for several
functions f

1
Y 5

BBB,t

, —
2
. In the first column, I display the usual beta-estimation regression. LSM

unconditional CDS-market betas are statistically indistinguishable from zero. In the second column
I estimate beta as an a�ne function of Y 5

BBB

. Although the point estimate implies that beta
rises with Y 5

BBB

, the result is not statistically significant. In the third column I allow the beta to
di�er depending on whether credit spreads are above or bellow median and found that they are
statistically larger when spreads are above median (12-lag-Newey-West t-statistic of 2.57). In the
forth and fifth columns I explore the non-linearity in more detail and found that the reduction
in betas in good times is mostly driven by very low betas when spreads are themselves very low.
In column six, I show that a quadratic functional form also leads to the conclusion that, at least
initially, betas and spreads rise together in a statistical significant way. Overall, the results support
the argument that there is a statistically significant positive relation between betas and the level of
credit spreads, even if it is not linear.

9In spite of 2002 not being a NBER-designated recession, it was a turbulent year. Credit markets were hit by large
corporate defaults and accounting frauds that later motivated SOX, credit spreads reflected this reality with average
CDS spreads of BBB-rated firms being almost as high as during the financial crisis. Stock markets su�ered heavy
losses, the S&P500 had a total return of -24.6%.
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The next step in the argument that time-varying betas explain the cross-section of CDS returns is to
show that this time variation is related to time variation in the CDS-market risk premium. In a world
in which the CDS market is the only priced factor, even if betas are time-varying, unconditional
betas could still price the cross-section of assets. This result would obtain, for example, if betas were
independent of the price of risk.10 Accordingly, I now study time variation in risk premia and its
relation with betas. If time-variation in betas is indeed fully captured by time-variation in average
CDS spreads alone, understanding the relation between betas and the CDS-market risk premium is
equivalent to understanding the relation between the CDS-market risk premium and average CDS
spreads. This assumption is reasonable given the limited sample size and my desire for parsimony.
Furthermore, I later conduct another test of the hypothesis that the joint dynamics of betas and
returns explains the cross-section of CDS returns which does not rely on this assumption.

The relation between the CDS-market risk premium and average CDS spreads should be similar
to the relation between the risk premia of defaultable bonds and their yield spreads over maturity
matched Treasuries. A bond can be synthesized from a treasury and a CDS and while CDS-
bond basis exist and are time-varying, they are generally small compared with the level of spreads
themselves. All this means that I do not need to solely rely on the findings in my limited sample in
order to understand the relation between CDS spreads and returns. I can learn from the literature
that examines the bond-yield-and-bond-return relation over long samples. The conclusion there
is that aggregate credit spreads vary mostly because of changes in bonds’ expected returns. For
example, Giesecke et al. [2011] shows average credit spreads fail to predictive 4-year defaults in a
150-year sample, time variation in credit spreads was dominated time variation in expected returns.

Reassuringly, I reach a similar conclusion in my sample. I run regressions of CDS-market returns on
the average CDS spread of BBB-rated firms at the beginning of the period. I run these regressions
over several horizons – one month, three months, six months and twelve months – and several
specifications that allow for a non-linear relation between average CDS spreads and expected returns.

The level of CDS spreads is a strong predictor of returns and its predictive power rise with the
horizon. For example, in the linear specification, R-squared values rise from 7% at one-month
horizons to 55% at the one-year horizon. The non-linear specification with dummies for the 20th
and 80th percentiles has roughly the same R-squared values as the linear specification, indicating
that CDS spreads are particularly good return predictors when those spreads are extreme. In
particular, CDS spreads above the 80th percentile are strongly associated with high future returns,
for example, over the next six months CDS-market returns are on average 43.3% higher than when
CDS spreads are between the 20th and 80th percentiles. This magnitude is more than three times
the unconditional average of 6-month CDS-market returns, 11.9%. The results are statistically
significant for most specifications, as implied both by the Newey-West t-statistics with the same
number of lags as the overlapping horizon and 18-month block-bootstrap p-values.

The results in this section support the claim that both LSM CDS-market betas and the CDS-market
risk premia are positively correlated. In a world where the true model was a CDS-market model with

10See Lewellen and Nagel [2006].
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time-varying risk premia, this correlation would imply that an unconditional model would predict
a too-low LSM return. I the next section I go from this qualitative statement to a quantitative test
of whether the the joint dynamics of betas and returns explains the cross-section of CDS returns.

4.2 Conditional Asset Pricing Model

If the joint dynamics of betas and returns are the only source of the CDS-market-model mispricing
is all that drives the alphas of LSM, a conditional one-factor model should be able to account for the
cross-sectional variation in unconditional expected returns by maturity.11 To test this proposition,
I evaluate the following stochastic discount factor:

M
t+1 = 1 ≠ b

t

1
RMKT,ALL

t+1 ≠ E
Ë
RMKT,ALL

t+1
È2

+ c (HSMLS
t+1 ≠ E [HSMLS

t+1]) ,

where b
t

tracks the market risk premium E
t

Ë
RMKT,ALL

t+1
È
. Because I price zero-cost portfolios,

the mean of the factor is unidentified and I choose it such that unconditional expected returns
are a linear function of covariances. I model b

t

as an a�ne function of X
t

= Y 5
BBB,t

. As shown
previously, the level of CDS spreads tracks bonds’ expected returns and the focus on a single
variable is a parsimonious solution to the choice of conditioning variables. In the end, accounting
for time-varying risk premia changes the one-factor model into a two-factor model12:

ERi

t+1 = a ◊ cov
1
Ri

t+1, RMKT,ALL

t+1
2

+ b ◊ cov
1
Ri

t+1, y5
t

RMKT,ALL

t+1
2

+ c ◊ cov
1
Ri

t+1, HSMLS
t+1

2
.

To estimate this model I need to estimate the three covariances above. I will use a non-synchronous-
trading-robust estimator for cov

1
Ri

t+1, y5
t

RMKT,ALL

t+1
2

because some single-name, non-five-year CDS
spread quotes may be su�ciently illiquid that they reflect information with a delay. This issue is
relevant (for pricing the cross-section of returns by maturity) now but not before, because the LSM
– the factor that prices the cross-section of CDSs by maturity – is, by definition, synchronized
with portfolio returns; both are constructed from the same quotes.13 In on-line appendix I provide
evidence that liquidity-related quote delays are indeed a concern for the LSM.14

11Here I only investigate what the model implies for unconditional average returns across maturities. The model has
implications about conditional average returns of these portfolios also. In the on-line appendix I provide qualitative
evidence on that, I show LSM returns can also be (positively) predicted by average CDS spreads.

12

M
t+1 = 1 ≠ b

t

(f
t+1 ≠ Ef

t

) ,

E
t

Re

t+1 = E
t

[(a + bX
t

) (f
t+1 ≠ Ef

t+1) Re

t+1]
ERe

t+1 = E [(a + bX
t

) (f
t+1 ≠ Ef

t+1) Re

t+1]
ERe

t+1 = acov [Re

t+1, f
t+1] + bcov [X

t

Re

t+1, f
t+1] ,

13Lack of synchronicity may also cause biases in the estimates of unconditional market betas. In unreported results,
I show the corrections that I use for non-synchronous betas have little e�ect on the pricing errors of the unconditional
CDS market model. Delays may also influence the joint pricing of 5-year-spread- and maturity-sorted portfolios. In
unreported results, I use the SDF method to evaluate the 3-factor model and show the results are unchanged relative
to those that I show in previous sections, which use time-series methods.

14Other studies provide evidence of updating delays in CDS spreads. Mayordomo et al. [2010] investigate the
possibility of delays in CDS quotes at the five-year tenor. In periods fewer CDS transactions occur, Mayordomo et al.
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I estimate cov
1
Ri

t+1, y5
t

RMKT,ALL

t+1
2

as:

estimator = ˆcov
1
Ri

t+1, y5
t

RMKT,ALL

t+1
2

+ ˆcov
1
Ri

t+1, y5
t≠1RMKT,ALL

t

2
.

This estimator is similar to Scholes and Williams [1977] beta. I show the precise assumptions under
which the sum-of-covariance estimator is consistent in appendix A. Panel A of Table 4 reports
the covariance estimates for the 5-year-cds-spread and maturity sorted portfolios. The covariances
decrease with maturity within each of the five groups of firms, hence covariances qualitatively line
up with the pattern in average returns. In panel B of Table 4 I display the summary statistics
of the estimated cross-sectional model. Consistently with the pattern in betas, covariances with
y5

t≠1RMKT,ALL

t

are positively priced, ⁄ = 0.57 when y5
t≠1RMKT,ALL

t

is standardized to have one
volatility. The model fits the cross-section of expected returns as precisely and the LSM-based
empirical model, like that model, it produces–s that are a fraction of average returns and it is reject
by the GRS test for similar reasons. In panel D I show that LSM is redundant for pricing purposes
in a conditional model, its price of risk is statistically insignificant then.

The results in this section add a lot more of detail to the behavior of the term structure of credit
risk. It ties the higher unconditional riskiness of short-term assets to their high CDS-market betas
in times when the CDS-market risk premium is high. In the next section, I study a parsimonious
credit risk to understand the characteristics of an economy that can match those results. In doing
so, I will also make explicit the implications of my results for the horizons of uncertainty investors
are concerned and charge a risk premium to be exposed to.

5 Model

In this section, I describe a parsimonious credit risk model that matches the following interdependent
set of facts. LSM has a high unconditional risk premium, because it is a hedge to CDS-market risk
when the price of CDS-market risk is low, but LSM loads up on CDS-market risk when the price
of CDS-market risk is high.

Credit risk models are usually judged by their ability to match certain moments of the average
credit spreads across a number of groups of firms at di�erent maturities (Chen et al. [2009], Chen
[2010], Huang and Huang [2003], Bhamra et al. [2010].). The results that I presented before were in
terms of the risk premia and betas of certain credit strategies. Traditional models and my empirical
results are expressed in di�erent units. In order to be able to understand what the empirical results
imply for traditional credit-risk models I will express my results in terms of implications for the
behavior of credit spreads. Instead of thinking about the LSM and the CDS-market portfolio, it

[2010] show the five-year quotes on the Markit database is lead more often than it leads, in a daily basis, the quotes on
the CMA database. Collin-Dufresne and Bai [2011] also found the contribution of five-year CDSs to price discovery in
relation to bonds – as summarized by the Gonzalo and Granger [1995] measure – falls as the financial crisis worsens,
with bonds surpassing CDSs for high-yield names during the worst of the crisis. If the same features that cause delays
in 5-year CDSs have an amplified e�ect on the slope of the term structure of CDS spreads, these results add to the
evidence that the autocorrelation of the LSM is indeed driven by updating delays.
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is useful to think about the elements of the term structure of credit spreads that that those two
returns reflect.

LSM is a steepener in the average credit spread curve of BBB-rated firms. LSM sells short-maturity
CDS (long risk) and buys just enough long-maturity CDS (short risk) to hedge them agaisnt simul-
taneous shifts in short- and long-maturity shifts in credit spreads, or shifts in the level of the term
structure of credit spreads in the jargon of the term structure literature. It is therefore intuitive
that LSM will have high returns when short-term spreads fall and/or long-term spreads rise, that
is, when the credit spread curve steepens. In the on-line appendix, I show this formally using a
convenient linearization as well as an empirical comparisson between the LSM and changes in a
measure of the steepness of the credit curve.

While the LSM is a steepener, the CDS-market is a bet on an across-the-board drop in credit spreads.
The CDS-market sells CDSs of all maturities and credit qualities, hence it has high returns when
CDS spreads fall. With this characterizations, I am now ready to describe the model.

First, the model is about the term structure of CDS returns of BBB-rated firms only. In particular,
I do not not attempt to explain cross-sectional di�erences in risk premia that are due to di�erences
in yields across firms. The model is a structural credit risk model in the sense that a firm defaults
if by the time its debt matures, its asset value falls below a certain threshold, the default boundary.

The value of BBB-rated firms follows a one-factor structure with stochastic volatility:
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) < 0 to reflect the fact that non-earnings driven growth in firm value is smaller
during bad times because firms issue less equity and debt. Second, I make
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such that both idiosyncratic and systematic volatility increase in bad times. µ
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) is endogenous
once I specify the stochastic discount factor (SDF). It then follows that, during bad economic
conditions, firm value volatility is high and payouts are low.

To compute prices, I specify the exogenous SDF
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where r is the instantaneous risk-free rate, and ›‡
t

is the of risk of shocks to dZ
[1]
t

(which are the
only source of risk). The price of risk ›‡

t

also varies over time and is also controlled by the single
state variable ‡

t

. This means that a bad economy is also characterized by high risk premia.

I specify the dynamics of the single state variable ‡2
t

flexibly. It follows a CIR process:
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dt + ‡vol‡

t
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t

,

with constant persistence „.

In total, the model has three shocks, dW, dZ [1], dZ [2], with a covariance matrix �. Defaults occur
if the value of the firm falls below an exogenous value B – the default boundary – by the time its
debt matures. I model the firm debt as having the same maturity as the CDSs that I price. CDSs
payo�s are as follows. If the firm survives, the protection seller gets a fixed payment T ◊ y , where
T is the CDS maturity and y is the CDS spread. On the other hand, if the firm defaults, the CDS
seller has a negative payo� equal to the loss given default: ≠L. So if · is the time of default, the
CDS payo� is:

CDS (T, y) = 1
·>T

T ◊ y + (1 ≠ 1
·>T

) (≠L)

· =

Y
]

[
T if V

T

< B

> T o.w.
,

The spread of a CDS is such that
E[�CDS (T, y)] = 0,

and I compute it using Monte Carlo methods. I focus on the one- and five-year maturities. These
maturities are shorter than those studied in Chen et al. [2009] – 4 and 10 years – and Bhamra et al.
[2010] – 5- and 10-year maturities. Because the objective of this model is not to fit an exhaustive list
of the moments of the entire term structure of CDS spreads, I have to choose a set of maturities to
investigate. My choice of one- and five-year maturities allows me to examine one commonly studied
maturity – five years – but with a focus on the short end of the slope of the term structure where
expected returns are more sensitive to maturity.

5.1 Calibration

I have to calibrate
1
›, ‡̄, r, ‡vol, ’, �, L, B, „

2
. I pick › such that the maximum Sharpe ratio in the

economy is on average ›E [‡
t

] = 0.5 per year. I choose ‡̄ such that the unconditional mean of ‡
t

,
E [‡

t

], equals 0.12. This number is consistent with an average aggregate equity volatility of 15%, if
the aggregate firm has leverage 20% and its debt is risk free.15 I set the risk-free rate to zero at all
the times. The e�ects of interest rates on the quantities that I study are likely to be small and the
short-term interest rate was small in my sample – 1.72% per year.

15The average book leverage of public firms is 25.1% (Rauh and Sufi [2012]) and the median book-to-market ratio
is 1.21. Dividing the first by the second yields 0.207.

16



I pick ‡id,1 = 0.0808 such that the average idiosyncratic volatility of a typical firm is 0.208, and
thus, it has a Sharpe ratio is half that of the market (Chen et al. [2009]). For the volatility of
volatility, I pick ‡vol such that the value of the volatility of volatility is 0.06, half the value of the
average volatility. This choice translates into a volatility of the economy’s maximum Sharpe ratio
that is half that of its mean. For an aggregate firm with leverage 20%, this choice of volatility of
asset volatility translates into a volatility of equity volatility of 7.5%. From January 1996 to May
2012, the standard deviation of rolling one-year S&P500 realized volatilities is 8.14%.

Both debt (Jermann and Quadrini [2012]) and equity issuance are countercyclical and can have
sizable e�ects on the value of a firm. For example, the market value of equity of the average firms
grows by 13% in five years due to non-returns-related reasons (Daniel and Titman [2006]). The
rolling average of net payouts – the dividend yield minus net equity issuance calculated in Roberts
et al. [2007] – was -0.61% in the last decade, and -0.48% from January 1990 to December 2010. I
design a payo� function that reflects these facts:
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,

such that when volatility is two standard deviations below its mean, the firm issues securities worth
0.04 of its total value, and when volatility is two standard deviations above the mean, it retires
securities worth 0.08 of the value of its assets. This behavior of payo�s makes default more likely
in bad times, because payout-driven firm value growth is smaller at those times. Chen et al. [2009]
emphasizes that having a channel that makes firms default in bad times is important, otherwise, the
high risk premia in those times would mean that a negative relation exists between credit spreads
and default losses. 16

I choose L = 1 ≠ 0.449 following Huang and Huang [2003]. I study the results with „ = 0.7 – a
one-year decay of 0.3 – and „ = 0.1 – a one-year decay of 0.9. The smaller persistence is closer
to the estimates of persistence using realized stock variance.17 In terms of time-varying expected
returns, the lower persistence is consistent with components of expected returns estimated by Kelly
and Pruitt [2011] and to a certain extent Lettau and Ludvigson [2001]. The high-persistence version
of the model stands in for stochastic discount factors arising from models that try to match the
predictability evidence from dividend-price-ratio predictive regressions.

I choose the default boundary B = a
boundary

+ b
boundary

‡0 + c
boundary

‡
t

as a function of the initial
and current level of volatility to allow for rating through the cycle as well as countercyclical default
boundaries.18 I set a

boundary

, b
boundary

, and c
boundary

to match the following moments: the un-
conditional default probabilities and average CDS spreads at the 1- and 5-year horizons; the slope

16I also allow for time-varying default boundaries and will calibrate those boundaries, so shutting down the depen-
dence of payo�s to the aggregate state moves more of the burden of matching the data to the parameter that controls
sensitivity of default boundaries to the aggregate state, but should not do much for the other results. Furthermore, I
check other parameterizations with smaller sensitivity of payo�s to aggregate state and they behave similarly.

17Using 1-year realized variances of the value-weighted stock market return estimated from daily returns since July,
the 1st of 1963, I estimate a slope coe�cient of 0.29 in a rolling regression of variance on its 1-year lag.

18This exercise is similar to that in Chen et al. [2009]. Chen et al. [2009] choose b
boundary

to match the sensitivity
of BBB-rated firms leverage to the consumption surplus ratio. I choose it together with c

boundary

to match another
set of moments.
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coe�cient of a regression of 4-year default rates on 4-year spreads (Chen et al. [2009]); and the un-
conditional correlation between the five-minus-one CDS spread slope and the one-year CDS spread.
Because I need to match six moments with three parameters, I cannot match all the moments
exactly, so I minimize the square of the di�erence between model quantities and the data.19

I model the correlation structure of
1
dW, dZ [1], dZ [2]

2
in the following way. fl

1
dZ [1], dZ [2]

2
= 0 is

zero, which means the idiosyncratic shocks are indeed idiosyncratic. I model the volatility shock
to have time-varying correlations with the SDF. This will amplify the time-variation in expected
returns of assets exposed to volatility shocks. I choose
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Negative values reflect the evidence that discount-rate shocks and returns are negatively correlated.
It also reflects a view that both discount-rate shocks and volatility shocks are priced – they are
indistinguishable in this model.

5.2 Results

I report the results in Table 5. For the low-persistence specification, „ = 0.7, the model generates
reasonable default probabilities of 196 bps and 29 bps at the five- and one-year horizons, respectively.
The one-year average CDS spread of 86 bps is close to the 77 bps that I measured in the data, but
the five-year spread of 196 bps is is too high compared with the 114 bps that I measured in the
data. The 0.67 coe�cient of four-year horizon defaults on credit spreads is lower than the value that
Chen et al. [2009] used. The unconditional correlation between the slope of the term structure and
the short-maturity spread is -0.57 compared with -0.55 that I measured in the data. Importantly,
the model generates this low correlation through a non-monotonic relation between volatility and
the slope of the term structure of CDS spreads as displayed in Figure 5.

The hump-shaped relation between the one- or five-year CDS spreads – level – and the 5-minus-1
spread – slope – implies that their correlation is time-varying. When the level of CDS spreads is
low, level and slope changes are positively correlated. When CDS spreads are high or the slope is
flat, level and slope changes are negatively correlated. In terms of LSM and CDS-market returns,
these correlations between the level and the slope imply that LSM has time-varying CDS-market
betas that are high when the CDS-market risk premium is high.20

The behavior of betas coupled with the pricing of volatility shocks embedded in the model imply that
CDS curve steepeners, of which the LSM is an example, are risky. The returns of credit steepeners
are high because credit steepeners stand to lose from increases in volatility when volatility is high.

19I multiply the beta-coe�cients moments by 100 to make them comparable to default probabilities and spreads,
which are quoted in basis points.

20The approximations that I developed in the last section tie LSM and market returns to changes in the CDS spreads
of the firms and maturities from which they are built. In the model, I solve for the CDS spreads for BBB-rated firms.
The spread changes which LSM and market are a function of are not exactly the changes in the average spreads
currently BBB-rated firms, because some firm ratings are upgraded or downgraded. Practically, the two series, the
change in spreads of currently BBB-rated firms and the change in the average CDS spreads of currently BBB-rated
firms, are strongly correlated and I will ignore their di�erences in my discussion.
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Because shocks to volatility are priced and its risk premium is high when volatility is high, the
dynamic of the exposures of credit steepeners implies that they have high unconditional average
returns.

The non-monotonic relation between the level and the slope of the term structure of CDS spreads
is key to the model’s ability to match the facts above. To understand why it arises, consider the
positive correlation first. When volatility is low, the short-maturity CDS is relatively safe, and
thus, its spread is insensitive to small increases in volatility. The longer-maturity CDS is still risky
despite the low volatility, because the quick mean reversion of the economy implies that volatility
can rise substantially before the CDS matures. As a consequence, the long-maturity CDS spread
is sensitive to increases in volatility. Taken together, these two facts imply that the CDS curve
becomes steeper at the same time that the level of CDS spreads rise.

Consider now the negative correlation between the level and the slope of the term structure of credit
spreads. When volatility is high, the short-maturity CDS is no longer safe, and thus, its spread is
sensitive to changes in volatility. The long-maturity CDS now is the relatively safe one, because
the quick mean reversion of volatility implies that the risks that lie in the future are likely smaller.
Therefore, the long-maturity CDS spread becomes less sensitive to volatility than the short-term
spread. Taken together, these two facts imply that the CDS curve becomes flatter at the same time
that the level of CDS spreads rise.

To understand the role of the persistence of volatility, I also produce a calibration with highly
persistent volatility – „ = 0.1. This calibration generates reasonable default probabilities at the
one-year and five-year horizons of 28 bps and 215 bps, respectively. The five-year average CDS
spread is 139 bps, higher than the 114 bps that I measure in the data, whereas the one-year average
CDS spread is 24 bps, much lower than the 77 bps that I measure in the data. The key di�erence
between the calibrations, however, shows up in the unconditional correlation between the level and
slope of the term structure of CDS spreads: it is positive and equal to 0.75, instead of the -0.57
featured in the low persistence calibration. The flip side of this result is the lack of a hump shape
in the function that maps volatilities into the slope of the term structure, for relevant values of
volatility. This pattern is displayed in Figure 5. As a consequence, this calibration also fails to
match the time-varying correlations between level and slope that I found in the data as well as the
fact that credit steepeners are risky.

6 Conclusion

I study how risk premia vary with maturity in corporate CDS markets, by studying the cross-section
of constant-duration CDSs of various maturities from April 2002 through May 2013. CD CDSs are
a convenient standardization with which to study the pricing of cash flows by maturity. The cross-
section of risk premia of CD-CDS portfolios of various maturities relates closely to the cross-section
of prices of shocks to average CDS spreads of various maturities.

I find that the risk premia of portfolios of CD CDSs are decreasing in maturity and that this cross-
sectional variation in expected returns by maturity is explained by a risk factor, LSM. This risk
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factor is a portfolio that sells short-maturity CD CDSs and buys long-maturity ones. This first
finding reduces the task of understanding the relation of risk premia and maturity to understanding
the LSM.

I then show LSM has time-varying CDS-market betas that are high and positive when proxies for
the CDS-market risk premia is high, and low and negative when proxies for the CDS-market risk
premia are low. This type of market-beta dynamic is exactly the kind that induces mispricing in an
unconditional CDS market model when the true model is conditional. Consistent with this insight,
I show that a conditional CDS market model can also price the cross-section of constant-duration
CDS portfolio returns by maturity.

Finally, I develop a parsimonious credit risk model that makes sense of this study’s key empirical
findings. Namely, the unconditional risk premia of CD CDS portfolios is decreasing in maturities,
and the CDS-market betas of short-maturity CD CDS portfolios are smaller than those of long-
maturity CD CDS portfolios in good times, but larger in bad times.

In the model, the quick mean reversion of economic conditions implies that the risks of short-
term and long-term CD CDSs vary di�erentially over time. When economic conditions are good,
short-term assets are safe, but long-term assets are risky, because the good short-term outlook is
expected to die out quickly. When economic conditions are bad, long-term assets become less risky
than short-term assets, because the dire short-term outlook is expected to die out quickly. Since
risk premia are high when economic conditions are bad, the described risk dynamics by maturity
imply that short-term CD CDSs are unconditionally riskier.

In a nutshell, I reach several conclusions. First, risk premia of short-term cash flows are uncondition-
ally higher than those of long-term cash flows. Second, this cross-sectional pattern in risk premia by
maturity can be traced back to exposures to a risk factor, a portfolio that sells short-maturity CD
CDSs and buys long-maturity ones. Third, the cross-sectional pattern in risk premia by maturity
can be further traced to a conditional CDS market model. Finally, a parsimonious model of credit
risk can rationalize the cross-sectional pattern in risk-premia by maturity as well as the di�erential
behavior of the time series of CDS-market betas of CD CDS portfolios of di�erent maturities.
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Appendix

A Covariances with Possible Delays in Slopes.

Let
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1
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t

2
+ Á

t+1

r
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t+1 + Á
t+1,

where r
t+1 is the true return, rı

t+1 is the observed return, 1 ≠ ⁄ is a measured of how much delay
there is in the updating of the slope information and Á

t+1 is orthogonal to current and lagged values
of rlvl and rslp. That is, true returns follow a two-factor structure with factors being rlvl

t+1 and rslp

t+1.
The observed returns reflect up-to-dated information on the level factor, but reflect both lagged
and contemporaneous changes in the slope factor. I want to recovery the true covariances:
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The covariance of rı
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If the contemporaneous level return and slope returns are uncorrelated with the lagged slope returns
– which I will assume in this section – then:
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and adding both contemporaneous and lagged covariance yields:
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which is the true covariance.
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Figure 1: The Term Structure of CDS Spreads
The sample period is April, 2002 to February, 2013 for the single-name plot and April, 2006 to May,
2012 for the indexes plots.

Panel A: Time Series of Spreads for Investment-Grade U.S. Single Names.
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Figure 2: The Relation between Volatility and Average Risky Duration
Risky durations are computed from the cross-section of CDS spreads and risk-free term structures
using the standard CDS model. Please see the text for details on the construction of CDS portfolios
of BBB-rated firms as well as those sorted on 5-year CDS spreads.
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Figure 3: Average Returns and LSM-Model Expected Returns for Portfolios Formed on
5-Year CDS Spreads and Maturity: April 2002 to February 2013.
The green bars are time-series average monthly returns multiplied by 12. The yellow lines are
model-implied expected returns. The asset-pricing model is:
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Figure 4: Time-Varying Correlations between the Returns on the LSM and the Market
Correlations are 12-month forward-looking between LSM and the RMKT,ALL. Y 5

BBB

is the average
CDS spread of BBB-rated firms.
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Figure 5: The Model-Implied Relation between Slope and Level.

Panel A: Low Persistence of Volatility.
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Table 1: The One-Month Excess Returns of CDS Portfolios of at Various Maturities,
in Basis Points.
Standard errors are 12-lag, Newey-West and p-values are from a circular block bootstrap Poli-
tis and Romano [1994] with block size equal to 24 months. The sample period is April/2002 to
February/2013 for single-name portfolios and April 2006 to May 2012 for indexes. L-S is the 3-10
portfolio, 2nd P.C. is the second principal component from {3,5,7,10}, and L-S rank has portfolio
weights (1,1/2,-1/2,-1) respectively.

3 5 7 10 L-S 2nd P.C. L-S(Rank)

BBB (cv)
value 123.68 100.63 73.84 65.32 58.36 45.53 71.75
s.e. 59.61 53.99 50.65 47.86 19.22 14.49 22.68

p-value bootstrap 0.00 0.00 0.00
Sharpe Ratio 0.63 0.56 0.44 0.41 0.92 0.95 0.96

BBB (rd)
value 71.81 59.31 34.97 30.01 41.80 22.63 53.97
s.e. 35.32 32.79 24.58 21.92 15.44 7.20 19.78

p-value bootstrap 0.01 0.00 0.01

Low Spread
value 19.59 -0.66 -10.27 -16.71 36.29 26.50 41.10
s.e. 27.61 26.40 24.79 23.87 12.25 9.34 14.78

p-value bootstrap 0.00 0.00 0.00

20-40
value 75.91 55.35 31.29 24.13 51.78 40.70 63.81
s.e. 37.61 34.84 33.16 31.36 17.37 13.12 20.73

p-value bootstrap 0.00 0.00 0.00

40-60
value 112.91 73.87 37.10 24.95 87.96 67.12 106.34
s.e. 68.57 63.58 59.56 54.63 25.75 19.27 30.27

p-value bootstrap 0.00 0.00 0.00

60-80
value 214.36 193.71 138.42 124.92 89.44 71.73 117.09
s.e. 126.36 115.38 106.78 99.93 42.46 31.73 50.04

p-value bootstrap 0.03 0.02 0.01

High Spread
value 597.28 545.85 459.22 467.33 129.95 107.92 173.27
s.e. 263.41 242.75 227.87 214.27 77.19 57.56 90.36

p-value bootstrap 0.03 0.02 0.02

CDX(cv)
value 31.43 19.03 1.23 -3.91 35.34 27.30 44.24
s.e. 58.70 51.73 43.88 38.02 27.01 20.51 31.86

p-value bootstrap 0.08 0.08 0.07
Sharpe ratio 0.21 0.15 0.01 -0.04 0.52 0.53 0.55

CDX(rd)
value 13.85 7.24 -1.19 -3.19 17.04 12.27 21.26
s.e. 31.20 25.25 19.99 15.75 17.44 9.65 20.39

p-value bootstrap 0.17 0.09 0.15
Sharpe ratio 0.18 0.11 -0.02 -0.08 0.39 0.51 0.42

ITRAXX(cv)
value 33.89 14.74 -2.65 -14.42 48.31 35.64 57.01
s.e. 49.72 43.88 40.64 37.82 24.11 18.35 27.85

p-value bootstrap 0.01 0.01 0.01
Sharpe ratio 0.27 0.13 -0.03 -0.15 0.78 0.76 0.80

ITRAXX(rd)
value 16.08 5.41 -2.17 -6.56 22.64 15.96 26.43
s.e. 24.48 19.09 16.19 13.89 13.73 7.75 15.74

p-value bootstrap 0.03 0.01 0.03
Sharpe ratio 0.26 0.11 -0.05 -0.19 0.64 0.80 0.66
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Table 2: Pricing Portfolios of CDS of Di�erent Maturities
Ri

t+1 is the holding-period return of a constant-volatility portfolio of i-year CDSs of BBB-rated
firms, R1st

t+1 and LSM
t+1 are the first and second principal components of Ri

t+1, i = {3, 5, 7, 10},
respectively. Ri,k

t+1 is the return of a constant-volatility portfolio of i-year CDSs of firms whose
five-year CDS spreads belong to the k-th quintile of five-year CDS spreads. RMKT,ALL

t+1 =
1
20

q
iœ{3,5,7,10}

q5
k=1 Ri,k

t+1, HSMS
t+1 =

q
iœ{3,5,7,10} Ri,5

t+1 ≠ Ri,1
t+1, R2nd,BBB

t+1 = R2nd

t+1, ER
T

is the
mean return, — ◊ ⁄ is the model-implied expected return, ⁄ is the factor mean return estimated
from the factor sample mean, and GRS is the GRS-statistic for the test that all the –s are zero and
P-val is its p-value.

Panel A: Portfolio Betas with Respect to LSM
3 5 7 10

BBB 0.73 0.13 -0.23 -0.63
Low spread -0.12 -0.32 -0.46 -0.60

20-40 -0.08 -0.46 -0.68 -0.85
40-60 0.29 -0.26 -0.71 -1.07
60-80 0.57 -0.50 -1.12 -1.80

High spread 3.08 0.91 -0.38 -1.73

Panel B: E
Ë
Ri,k

t+1
È

= —i

1E
Ë
RMKT,ALL

t+1
È

+ —i

2E [HSMS
t+1] + —i

3E [LSM
t+1] .

Avg |–| Avg |–|
Avg |ER| XS R2 P-value GRS Avg TS R2

Values 19.14 0.12 0.99 0.00 0.96
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Table 4: Conditional Asset Pricing Model.

Panel A: Predicted and realized returns.
ÊR cov

1
Ri

t+1, Y 5
BBB

◊ RMKT

t+1
2

/100 E
model

R

Low spread

3.00 19.59 3.01 15.57
5.00 -0.66 2.86 6.73
7.00 -10.27 2.76 2.16
10.00 -16.71 2.73 2.42

20-40

3.00 75.91 4.78 39.36
5.00 55.35 4.57 26.59
7.00 31.29 4.41 18.34
10.00 24.13 4.33 14.38

40-60

3.00 112.91 8.39 100.28
5.00 73.87 8.13 80.80
7.00 37.10 7.94 66.23
10.00 24.95 7.65 55.14

60-80

3.00 214.36 14.47 196.72
5.00 193.71 13.96 167.60
7.00 138.42 13.68 154.57
10.00 124.92 13.42 142.96

High spread

3.00 597.28 28.59 609.77
5.00 545.85 27.32 529.80
7.00 459.22 26.56 492.71
10.00 467.33 25.28 437.50

Panel B: E
#
Ri

t+1
$

= ⁄1 ◊ cov
1
Ri

t+1, RMKT,ALL

t+1
2

+ ⁄2 ◊ cov
1
Ri

t+1, y5
t

◊ RMKT,ALL

t+1
2

+ ⁄3 ◊ cov
!
Ri

t+1, HSMLS
t+1

"
.

XS R2 E [|–|] E[|–|]
E[|E

T

[R]|] E
#
–2$

P-value GMM ⁄1 ⁄2 ⁄3 T⁄1 T⁄2 T⁄3
Values 0.99 18.98 0.12 21.20 0.00 -1.59 0.57 1.10 -2.85 2.34 2.67

Panel C: E
#
Ri

t+1
$

= ⁄1 ◊ cov
1
Ri

t+1, RMKT,ALL

t+1
2

+ ⁄2 ◊ cov
!
Ri

t+1, LSM
t+1

"
+ ⁄3 ◊ cov

!
Ri

t+1, HSMLS
t+1

"
.

XS R2 E [|–|] E[|–|]
E[|E

T

[R]|] E
#
–2$

P-value GMM ⁄1 ⁄2 ⁄3 T⁄1 T⁄2 T⁄3
Values 0.99 14.13 0.09 16.34 0.00 -0.19 0.30 0.37 -0.54 2.88 1.03

Panel D: E
#
Ri

t+1
$

= ⁄1c
1
Ri

t+1, RMKT,ALL

t+1
2

+ ⁄2c
!
Ri

t+1, HSMLS
t+1

"
+ ⁄3c

!
Ri

t+1, LSM
t+1

"
+ ⁄4c

1
Ri

t+1, y5
t

◊ RMKT,ALL

t+1
2

.

⁄1 ⁄2 ⁄3 ⁄4
Parameter 0.28 0.13 0.41 -0.21
t-statistic 0.20 0.17 1.20 -0.37
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Table 5: Model Implications for CDS Spreads And Default Probabilities.
I obtain default probabilities from Moody’s. The lower numbers refer to the 1983-2007 sample
and the higher numbers to the 1920-2007 sample. The CDS spreads are the average CDS spreads
of BBB-rated firms who satisfy the data requirement in the 200204-201205 sample. —

s,def

is the
coe�cient of a regression of a default indicator over 4 years on credit spreads at the beginning of
the sample as reported by Chen et al. [2009].

Panel A: Low Persistence.

Model Data
a

boundary

0.25 ?
b

boundary

0.75 ?
c

boundary

0.20 ?
P (· Æ 5) 195.80 193-314

—
s,def

0.67 0.89
E[y5] 197.17 114

P (· Æ 1) 28.59 19-28
E[y1] 85.92 77
fl

slp,s1 -0.57 -0.55

Panel B: High Persistence.

Model Data
a

boundary

0.25 ?
b

boundary

0.20 ?
c

boundary

0.20 ?
P (· Æ 5) 103.11 193-314

—
s,def

0.18 0.89
E[y5] 270.39 114

P (· Æ 1) 14.26 19-28
E[y1] 68.54 77
fl

slp,s1 0.70 -0.55
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